傳統(tǒng)的窄帶無(wú)線接收機(jī),DVGA+抗混疊濾波器+ADC 鏈路的設(shè)計(jì)中,我們默認(rèn)ADC 為高阻態(tài),在仿真抗混疊濾波器的時(shí)候忽略ADC 內(nèi)阻帶來的影響。但隨著無(wú)線技術(shù)的日新月異,所需支持的信號(hào)帶寬越來越寬,相應(yīng)的信號(hào)頻率也越來越高,在這樣的情況下ADC 隨頻率變化的內(nèi)阻將無(wú)法被忽視。為了取得較好的信號(hào)帶內(nèi)平坦度,引入了ADC 前端匹配電路的設(shè)計(jì),特別是對(duì)于non-input buffer的ADC在高負(fù)載抗混疊濾波器應(yīng)用場(chǎng)景下,前端匹配電路的設(shè)計(jì)在超寬帶的應(yīng)用中就更顯得尤為重要。本文將以ADS58H40為例介紹ADC前端匹配電路的設(shè)計(jì)。
2. Non-input buffer ADC 內(nèi)阻特性及其等效模型
理想ADC 的輸入內(nèi)阻應(yīng)該是高阻態(tài),即在前端抗混疊濾波器的設(shè)計(jì)中無(wú)需考慮ADC 內(nèi)阻帶來的影響,但是實(shí)際ADC內(nèi)阻并非無(wú)窮大并且會(huì)隨著頻率而發(fā)生改變。從輸入內(nèi)阻的角度而言,ADC又可以被分為兩類,一個(gè)是有輸入buffer的ADC,輸入特性更趨向于理想ADC,內(nèi)阻往往比較大;另一類就是沒有輸入buffer的ADC,它們的內(nèi)阻在高頻不可忽略且隨頻率發(fā)生改變,但它們的功耗比前者要小。圖1為non-input buffer ADS58H40模擬輸入等效內(nèi)阻模型。ADC模擬輸入端采樣保持電路本身所等效的阻抗網(wǎng)絡(luò)隨頻率的改變而變化;再加上ADC 采樣噪聲的吸收電路(glitch absorbing circuit)RCR 電路,它的存在改善了ADC 的SNR 和SFDR,但也使得ADC的內(nèi)阻隨著頻率而越發(fā)變化。兩者效應(yīng)疊加使ADC 的等效負(fù)載整體呈現(xiàn)容性。
圖1 ADS58H40 模擬輸入等效內(nèi)阻模型
圖2以ADS58H40為例給出了內(nèi)阻隨頻率變化的曲線圖。A串聯(lián)模型,串聯(lián)模型中的串聯(lián)等效電阻值在Ohm量級(jí)。B并聯(lián)模型,并聯(lián)模型中的并聯(lián)等效電阻值在低頻(《 100MHz)的時(shí)候kOhm量級(jí),但隨著輸入頻率不斷升高(》200MHz),并聯(lián)等效電阻值會(huì)急劇下降到百歐姆級(jí),使其相對(duì)于抗混疊濾波器ADC端負(fù)載不可忽略。而且不管是并聯(lián)模型還是串聯(lián)模型中的等效電容,也使得抗混疊濾波器ADC端負(fù)載特性偏離理想的阻性特征需要補(bǔ)償。
圖2 ADS58H40 內(nèi)阻簡(jiǎn)化模型:A 串聯(lián)模型,B 并聯(lián)模型;及其相關(guān)頻率變化曲
3. Non-input buffer ADC 前端匹配網(wǎng)絡(luò)拓?fù)浼軜?gòu)
由于ADC 的等效內(nèi)阻隨頻率變化而且在高頻時(shí)偏離理想高阻態(tài),抗混疊濾波器ADC端負(fù)載阻抗的選擇就顯得尤為重要。理想ADC支持抗混疊濾波器的負(fù)載的任意選擇,完全沒有要求。但是內(nèi)阻的變化,使得現(xiàn)實(shí)中ADC希望前端的抗混疊濾波器的負(fù)載阻抗可以比較小,即傳統(tǒng)50Ohm 抗混疊濾波器的設(shè)計(jì),ADC的kOhm級(jí)的內(nèi)阻相對(duì)于50Ohm而言可以忽略不計(jì)。但是現(xiàn)在越來越多的抗混疊濾波器需要100Ohm 的負(fù)載設(shè)計(jì),以達(dá)到前端驅(qū)動(dòng)級(jí)的最優(yōu)工作狀態(tài)。圖5 以現(xiàn)在無(wú)線基站設(shè)計(jì)中常用的DVGA LMH6521 為例,為了使整個(gè)接收鏈路達(dá)到最優(yōu)的線性性能,推薦使用100Ohm 的抗混疊濾波器。此時(shí)如果仍采用簡(jiǎn)單的100Ohm 負(fù)載并聯(lián)在ADC 輸入端的做法,隨著輸入信號(hào)頻率的升高和輸入信號(hào)帶寬的增寬,ADC內(nèi)阻非理想特性將越來越明顯,它會(huì)直接拉低ADC 側(cè)的100Ohm 負(fù)載,惡化信號(hào)的帶內(nèi)平坦度。
圖3 DVGA 最優(yōu)工作狀態(tài)負(fù)載要求示意圖
為了統(tǒng)一抗混疊濾波器的設(shè)計(jì)以簡(jiǎn)化其在不同平臺(tái)項(xiàng)目中的移植,希望ADC側(cè)(包括ADC 等效內(nèi)阻和前端匹配電路)在整個(gè)信號(hào)帶寬中都呈現(xiàn)一致的阻抗特性例如圖3 應(yīng)用中的100Ohm, 引入了ADC 前端匹配網(wǎng)絡(luò)如圖4 所示。
圖4 Non-input buffer ADC 前端匹配網(wǎng)絡(luò)拓?fù)浼軜?gòu)簡(jiǎn)圖
其中
1) R1和R2是ADC側(cè)阻抗的主要組成部分,在假設(shè)ADC理想高阻特性的情況下,它即代表了ADC側(cè)的負(fù)載。由于ADC有限內(nèi)阻和所需的匹配網(wǎng)絡(luò),為了達(dá)到整體效果仍保持100Ohm負(fù)載狀態(tài),R1和R2遠(yuǎn)高于50Ohm的最優(yōu)取值。R1和R2不僅決定了ADC輸入pin腳的實(shí)際共模電壓(VCM-Analog input common mode current*R1, ADC的性能SNR 和SFDR會(huì)隨著VCM的變化而發(fā)生些許改變,請(qǐng)參見datasheet圖22);而且原本也是sampling glitch的低阻泄放路徑,所以不宜過大。R1和R2的取值原則為實(shí)現(xiàn)ADC端組合負(fù)載目標(biāo)前提下的最小值,而且最大值不宜超過100Ohm。
2) R5和R6代表ADC輸入口串聯(lián)的5Ohm或者10Ohm的阻尼電阻,為的是衰減可能由bonding wire寄生電感引起的震蕩。